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Ergodicity of the BFACF algorithm in three dimensions 
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Pllahassee. Florida, 323064052, USA 

Received 3 April 1991 

AbstrscL Let w be a walk in Z3. Let lhe endpoinls oi w be fixed at z and y in Z3. 
Suppose that d ( z , y )  = max,{]X;(z) - X,(y)J) where X , ( z )  is the ith coordinate 
of the v e n a  z E Z3. Then the BMCF algorithm is ergodic for walks joining z and y, 
provided that d(  T , y) > 1. 

1. Introduction 

The simulation of walks remains an active and interesting activity in Monte Carlo 
simulations of critical behaviour in statistical models in mathematics, physics and 
chemistry. ’Baditionally, walks were studied as a model for polymers in dilute so- 
lution (Kuhn and Kuhn 1943, Orr 1947, Montroll 1950). This relation to polymers 
made walks a much studied subject (Domb 1969, Daoud et al 1975, McKenzie 1976, 
Whittington 1982). Symanzik (1969) discovered a connection between a zero compo- 
nent g1#?I2 field theory (N -+ 0, where N is the number of components in a real 
field 4) and walks. This connection made walks interesting for the field theorist as 
well (Emery 1975, Frohlich 1982, Aragao tie Carvalho er al 1983), especially because 
it was hoped that it might provide a proof that the continuum limit of a lattice g1+212 
theory is trivial. 

These facts led to the invention of many algorithms which were used to simulate 
walks. In the context of a field theory Berg and Foester (1981) invented an algorithm 
which simulates walks with variable length and fixed endpoints in the hypercubic lat- 
tice. They applied this algorithm to ‘bosonic’ (Brownian) and ’fermionic’ walks (walks 
without ‘spikes’). This algorithm was subsequently used to simulate self-avoiding 
walks in fourdimensions (Aragao de Carvalho el al 1983, Aragao d e  Carvalho and 
Caracciolo 1983) in an effort to demonstrate that the continuum limit of a lattice 
g1+2/2 theory is trivial. 

In view of all these activities, it remained a remarkable fact that Berg and Foester’s 
algorithm (the BFACF algorithm) remained ill understood, despite numerous applica- 
tions. The first breakthrough occurred in 1986, when Neal Madras (1986) proved that 
the algorithm is ergodic in the square lattice (two dimensions). It was later noted that 
if the endpoints of the simulated walk do  not differ by at least 2 in any coordinate in 
three dimensions, then the algorithm is not ergodic (Madras and Soh1 1987). 

A second step in the understanding of the  algorithm came with a proof that 
if the algorithm is applied to unroored lattice polygons in the cubic lattice (three 
dimensions), then the ergodicity classes are the knot types of the polygons (a polygon 
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is a walk which begins and ends at the same lattice site) (Janse van Rensburg and 
Whittington 1991, hereafter referred to as I). This proof was subsequently used to  
prove that the algorithm is indeed ergodic in four and more dimensions, if applied 
to unrooted lattice polygons (Evertz 1991). 

In this paper we prove that the BFACF algorithm is ergodic if applied to fixed 
endpoint walks in three dimensions, provided that the endpoints differ by at least 2 
in any one coordinate. We organize the proof as follows: In section 2 we define the 
algorithm more closely and we consider the projection of a walk and the connection 
it has to knot projections. In section 3 we prove ergodicity, and we conclude the 
paper in section 4. 

E J Janse van Rensburg 

2. The BFACF algorithm and walks 

2.1. Definifions 

A self-avoiding walk, or walk, w ,  in Z d ,  is a sequence of distinct lattice sites wo, 
w i ,  . . ., w,, and associated edges ( W ~ , W ; + ~ ) ,  such that wi and are nearest 
neighbours in Z d .  We say that the vertices x and y in Zd are the endpoints of the 
wa!k Y if x = U- .." and 7 ,  = w . .~ or -. T .- = yn and 1,' = yG: L&t be the set of d 
orthogonal unit vectors in Z d .  Let Xi(.) be the ith component of the vertex I E Z d .  
Then X , ( e i )  = 6ij, where hi, is the Kronecker delta function. Define the metric 
d(x ,y ) ,  where x and y are vertices in R d ,  by d ( x , y )  = maxi{lXi(x)  - Xi(y) l ) .  

The BFACF algorithm is a local stochastic process which is defined to operate 
on any sequence of edges in Z d  (Berg and Fcester 1981). It was first applied to 
the self-avoiding walk by Aragao de Carvalho er a1 (1983) and Aragao de Carvalho 
and Caracciolo (1983). Let w be a walk with endpoints x and y. Then the BFACF 
algorithm operates in the following way: Pick an edge ( w ; ,  wisl)  of the current walk 
with uniform probability. Pick a unit vector ej  which is perpendicular to the vector 
(w;+, - wi) .  Move the chosen edge one lattice space in the direction e,, while 
inserting two new edges at its endpoints to keep the polygon intact. Finally, erase 
any double edges (spikes) which may result in this process. This recipe results in one 
of the two possible elementary transitions in figure 1. The total number of edges in 
the walk can change by 0 or by f 2 .  Let the new conformation be U. If v is a walk, 
accept it in the ensemble with probability p ( w  - v )  = Z(@),  and otherwise, reject 
the transition and read the old conformation again. Here, Z ( @ )  = pz if the length 
of the walk w increases by 2, where 4 is the only free parameter in the algorithm, 
and Z ( p )  = 1 otherwise. 

This simple Metropolis implementation (Metropolis et al 1953) of the algorithm 
realizes a Markov chain with state space the set of all walks with endpoints x and 
y. Neal Madras proved that this chain is irreducible (ergodic) in two dimensions 
(Madras 1986). I f  we apply this algorithm to unrooted polygons instead, then the 
chain is reducible in three dimensions (Madras and Sokal 1987). The ergodicity 
classes are the knot types of the polygons (Janse van Rensburg and Whittington 
1991). 

2.2. Projecrions and wa lk  

Let q be an open piecewise linear curve (with two fixed endpoints) in R3, where R 
is the set of all real numbers. Let Pq be the projection of this curve in the subspace 
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Figure 1. ?he elementaly BPACF moves. 

R2 c R3. We can borrow ideas from knot theory to characterize the curve in the 
following way: We call the projection Pq reguhr if all multiple p i n t s  are double 
points and if no vertex in q, including the endpoints, are projected into a double 
point. A vertex in q is defined as a discontinuity in the tangent to the curve. If, in 

overpassing strand, then a typical regular projection is illustrated in figure 2. This 
curve has WO endpoints, and can therefore not be a h o t .  We can see this easily; 
consider the Iocul operation on regular projections illustrated in figure 3(u). If we 
apply one step of this operation to a projection, then we reduce. the number of double 
points by one. If we repeat the operation, then we can remove all double points from 
the projection, and the projected curve is therefore self-avoiding. 

additiQE, & $.&cat& h. @..e pject ion whir!! segment the dOGb!P are the 

Figure 2 A projected curve. lhis projeaion k regular 

We can now apply these ideas to walks in Z3. Let Pa : Z d  - Z', where d 2, 
such that PG(x)=PmxwhereP,z=(X,(z),X,(z),a,a, ..., a) .  That is,Pa(z) 
is a projection of z E Z d  onto its first two coordinates. We can consider the action 
of Pa on a walk w c Z d .  In general Pau E Z2 c R2, that is, we can think of 
the walk as a continuous curve projected into the space 2'. Some edges in w are 
projected to points in 2' (if they are not parallel to either e, or e*). Define the 
vertices in Paw to be. those points in Ihe projecfion (as opposed to the definition 
for vertices in the piecewise linear case) where the tangent to the projected curve 
& ~ ~ s a , i i i ~ u o u s .  
sense) if all multiple points in the projection are double pints, and if no vertex (in 
Paw)  is projected onto a double p in t .  (This definition of vertices is equivalent to 
noting that vertices are points in the projection where two nearest-neighbour edges 
make a 90° angle, or are one of the endpoints in the projection.) 

-w-e an (jeilaiS the picjec;;cn iegu:ai ;in ;he hiciio: theoieiic 
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TI proceed, a connection between our projected walk and projected knots must 
be made. The walk w can be made into a circle embedded in 'R3 if we connect its 
endpoints by a continuous curve p in R3. It is easy to construct this curve such that 
it overpasses any segment of Pow in its projection. In addition, if Paw is regular, 
then it is a simple matter to arrange p such that the projection P,(wUp) is regular. 
Since w U p  is an embedded circle, it is a knot (for a review, see the book by Burde 
and Zieschang (1985)). If the projection P,(w U p )  is the projection with ascending 
overpasses, then w U p is the unknot, and there exists consequently a finite sequence 
of Reidemeister moves (figures 3(b)-(4) which will remove all the double points in 
the projection (Reidemeister 1932) (if we view the knot as a circle h 'R', the lattice 
is now ignored). The task in the next section is to show that we can perform these 
moves i~ Ae latrice, which will prove ergodicity. 

I: / b 
', / 

F l y m  3. Reidemeister moves. 
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3. Proof of ergodicity in three dimensions 

Let w be a walk in Z3, with endpoints z and y. Then we shall need the following 
definitions: 

DeJinition 3.1. A segment [wi,wj] of a walk w is the set of vertices 
{ W ; , W ~ + ~ ,  . . .,U,} if i < j, or the set {wj,w,+,, . . . ,w i } ,  if j < i. 

DeJinition 3.2. A segment [w i ,w j ]  is a side if the union of all the edges associated 
with the vertices is a h e  piece, and if the vertices w; and w j  are either endpoints of 
w,  or are incident on two edges which make 90° angles in the walk. 

A walk w has at most n sides (if it has n edges) and at least 1 side. Let w 
be a walk in Z3. Consider Paw. If we discard all edges which project to points in 
Z2, then Paw could be a walk in 2’. If it is a walk, then definitions 3.1 and 3.2 
generalize naturally to projected walks. Moreover, if Paw is a regular projection, 
then we can easily extend definitions 3.1 and 3.2 to be applicable; the integrity of the 
walk is preserved by indicating overpasses, but we lose track of the number of edges 
in the e3 direction in the walk. 

Proposition 3.3. (Janse van Rensburg and Wittington 1991) Let w be a walk in Z3 
and let U = ’Paw be its projection. Suppose that U is a walk in 22 with endpoints U 

and U. Then there exists a sequence of BFACF moves on w which will change U into 
any other walk in 22 with endpoints U and U. 

This proposition is crucial to the proof of ergodicity, since it allows us to manip- 
ulate segments of the projection by using BFACF moves. 

Defiirion 3.4. A box B(z,y) c Z d ,  where z and y are vertices in Z d ,  is the 
subspace B(z,y) = { z  E Zd;  IXi((z + y) /2 )  - Xi(z)l  < I&((. - y)/2)1VO < i < 

Consider a walk w with endpoints z and y in Z d .  Let Pa(z) = U and P,(y) = U, 
and let U = Paw. Then B(u,u)  c 22 is the box defined by the vertices ZL and U. 

Such a box is indicated in figure 4. If U = U, then there is only one point in the 
box. Since d ( z , y )  > 0 (U is a walk), we can always rotate or reflect axes to find 
a projection v with d ( u , v )  > 0. In fact, there exists a rotation or reflection of the 
axes such that IX,(u) -  X , ( U ) ~  = d ( u , v )  = d ( z , y ) .  In the rest of the paper, we 
can always work on this projection of the walk, without any loss of generality. 

Definition 3.5. An open n-ball V, with radius r and centre c is defined by V, = 
{ z  E ‘ R d l d ( r , c )  < r } .  

3.1. Regular projections and walks 

In this section we prove that given any walk in Z 3 ,  we can find a sequence of 
BFACF moves to tum its projection into a regular projection, in the sense defined 
in section 22. We shall need the following notation: Let q ( c )  C ‘R3 be a plane 
containiing the point c E ‘R3 and normal to the vector ei .  In the rest of thii section 

4. 
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Flgum 4. A projected walk. 

we use our notation of a walk w with endpoints z and y, and projection Y = Paw 
with endpoints U = ?.I and TJ = Pay. 

lb proceed, we need the sh@ constmclion defined in I .  For the sake of mm- 
pleteness, we redefine it here. Let [w i ,w j Is  be a side, and without loss of generality, 
suppose that i < j. Suppose that e, is a unit vector, of the form * e k ,  perpen- 
dicular to any edge in [ w i , w j I s .  This side can now be transform into a segment 
connecting wi and wj  and ~ t h  vertices tui, wi i- e,, wi+l + e,, . . . , w; + e,, w,) 
using only BFACF moves and without ever using a vertex outside the set of old and 
new vertices in the side and the segment. We do this as follows: Consider the edge 
[e i ,e i+l ] ,  and operate on it by a BFACF move, whichever is necessary, to shift it 
to [wi + e , , ~ ~ + ~  + e,]. In succession, perform the same construction on the edges 
[wi++, W ~ + ~ + J ,  for k = 1 , 2 , .  . ., until i+ k = j - 1. Then [ w i ,  w j ]  has been 'moved' 
a unit distance in the e, direction. Symboiidiy, we an represent iiiis operation by 
Mi,( . . ) .  Then 

M i j ( e , ) [ w i , w j ] ,  = [ai + e.,wj + e , ] , .  (3.1) 

After this operation, we simple relabel the vertices. As in I, we note that we can use 
this operation in an ohvious manner to split any side into smaller segments. We shall 
now use this construction to prove that we can make the projection v regular, in the 
sense explained in section 2.2. 

Lemma 3.6. Let w be any walk with endpoints z and y, and let Y = Paw. Then we 
can apply BFACF moves to remove all sides from the planes I , ( z )  and %(y), where 
i = 1 , 2  or 3; except for two sides which are incident on the endpoints 1: and y. One 
of these two sides will be in the intersection of the two planes &(z) and 73(z) and 
the other will be in the intersection IT,(y) and T3(y). 

BmJ Without loss of generality, suppose that Xi(z) 2 Xi(y) for each i, and 
rotate or reflect axes so that X,(z) > X,(y). Let z = (maxi{Xl(wi)),O,O). 
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Consider the intersection 7 , ( z )  n w.  This ir, a set of sides in w (some of which 
projects to points in v). Label any one of these sides by the integer 1, say [ w i , w j ] , ,  
and operate on it by M i j ( e l ) ,  its new position is then [mi + e l , w j  + e l ] . .  Label 
a second side now by 2. Operate first on the side labelled 1 by M , ( e , ) ,  and then 
on the side 2 with the same construction. Repeat this process until the intersection 
T1(z) n w contains only one last side, and suppose that it was labelled by an m. 
Consider the intersection 7,( z - e l )  r l  w then, and perform the same construction as 
before, starting the labelling now at m+ 1, and always moving the sides one step at a 
time, starting at the side labelled 1 with each step in the construction. Finally, we will 
consider the intersection 7 , (C) f lw ,  where Xl(c) < X , ( z ) .  At this stage, the plane 
q ( z )  contains exactly one side. We repeat the construction then once again for this 
side, which is then moved one step in the e, direction. This will remove the last side 
from q(z). Rotate axes now by 180°, and repeat the process, this removes all the 
sides from the plane ‘T1(y) by moving them in the -el direction. At this stage in the 
construction, we note that the edges incident on either z or y must be normal to the 
planes q ( z )  or q ( y )  respectively, otherwise they would have been edges in sides 
which will be moved. Mark these sides incident on z and y for future reference, and 
note that they are in the intersections q ( z )  n7,(z) and 72(y) n T3(y) respectively. 

We now repeat this operation, where we probe the walk with 12(*) and 7&) 
a;one, 

but all other sides have now been removed from ?; (z) and T (  y), where i = 1 ,2  or 
3. Note that the segments of the walk inside the box B ( z ,  y) were left unchanged but 
the boundary of B ( z ,  y) contains now only the endpoints of the walk This completes 

uistea;, ;ir b\e hst app;iaiion -w-.$ ieave iiiaiked sides uiCideiii oII 

the proof. 0 

Lemma 3.7. k t  w be a wak, and suppose that we have appiied the construction in 
lemma 3.6 to w. Suppose that w has endpoints I and y, and let U = P a z ,  v = Pay 
and suppose that v = Tau. Then we can remove all segments of w which projects 
into the projected box B( U ,  U) by applying the shift operator. In fact, we find that 
B( I, y) n w = {x, y} and B( U, U) n v = { U ,  U}. 

Froof. Let the same conditions as in lemma 3.6 be valid. Probe the walk with the 
plane TI(. - e l ) .  If any sides are in this plane, then we move them by M , ( e l )  
twice to the plane 71(z + el) ,  in the same manner we did in lemma 3.6. There is 
no possibility that the moving side will collide with an endpoint; if it does, then the 
moving side is in the plane %(z) or ‘T3(z), which is not true. Repeat this process with 
all the other sides in the probe ‘TI( z - e l ) .  Once all the sides have been moved, then 
we look at the plane 71(z - 2e1), and move the sides there out of 5 ( u , v ) ,  and so 
on. finally, we will have swept the box B(u, v ) ,  and the only segments which projects 
into the box are sides in the el direction with endpoints which projects outside the 
box (by the construction). Rotate axes now and perform the Same operation where 
we probe with 72(*) instead. The same conditions are valid here. Finally, the box 

0 

If we apply lemmas 3.6 and 3.7 to any given walk, then we note that the result will 
be a walk in a conformation which has no segments which project to the box B ( u ,  V)  

in the projection V .  The next lemma is useful in making a projection regular (as we 
defined it in section 2.2.) 

O(u,  v) have been swept clean. 
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Lemma 3.8. (Subdivision) Let w be a walk with endpoints x and y, and suppose 
that B(z ,y )  n w  = {x,y). Let T(z  + ' e . )  be a plane where z E Z3. Then we can 
perform a sequence of BFACF moves which will add one edge to each of the sides 
in w intersected by the plane. (In other words, we can subdivide each of the edges 
intersected by the plane into two edges.) 

Roof. The construction is similar to that in lemma 3.6. Without loss of generality, 
let the plane be T1(z + +e1). Furthermore, suppose that X,(x)  > Xl(y). We must 
consider three passible cases: (i) ( z  + +el) > X,(x), (ii) X l ( x )  > ( z  + + e , )  > 
Xl(y) ,  and (Ci) X,(y) > ( z + + e , ) .  The construction is simple in case (i): Probe the 
walk with the plane q ( p ) ,  starting at p = maxi{X,(wi)), as we did in lemma 3.6. 
Each side encountered in moved one unit step in the el direction. Finally, we will 
move the sides in the plane q ( z  + el) to the plane Tl(z + 2 e , ) .  The effect of this 
k that the sides whlch penetrate the plane TI(. + $e1) are now longer by one edge 
each. We now first deal with case (3): The construction is identical to that of case 
(I), we simply mtate axes by 180'. In the case of (ii) the construction is again similar 
to that of case (i), the only difference is that the subdivision does not happen inside 
the box B(z,y). We note that a new edge is introduced on I in the e, direction. 

leaves the coordinates of x unchanged. Since B(x ,y)  n w = {x,y}, there is no 
0 

Lemma 3.8 enables us to take a projection and to subdivide the edges (which pen- 
etrate a plane %(*)) into two edges each, in fact, we are inserting a new two- 
dimensional layer in our lattice which 'stretch' the walk. The only unaffected region 
is the box B(x,y), hut since it is empty, it is of no concern here. The subdivision 
allows an easy construction which will make the projection U regular. The following 
result is a direct consequence of the subdivision lemma: 

Progosition 3.9. Let w be. a walk with endpoints x and y (which project to the points 
U and v respectively), and let the projection of w be U. Suppose that B(u ,  U )  n U = 
{ U ,  U ) .  Let A be an open two-ball in the projection, such that O ( u , v )  n A = 0 and 
such that v n A  = 0. Suppose that the centre of A has half-integer coordinates. Then 
we can make A arbitrary large, using only BFACF moves. 

Proof. This is a direct result of subdivision. Consider the intersection of planes 
% ( z  + +ei) and A (where i = 1 or i = 2) ,  and subdivide the edges which penetrate 
the plane. (Here we choose z such that the intersection between the plane and A is 

0 

Proposition 3.10. Let w be a walk with endpoints I and y. Let V be an open, 
connected three-ball in Z 3 ,  such that B(x, y) n V = 0 and w n V = 0. Suppose that 
the centre of V has half-integer coordinates. Then we can make V arbitrary large, 

2 .  ' 

possibility of a side colliding with an endpoint. This completes the proof. 

not empty, and z E Z3.) 

using Only BFACF moves. 

ProoJ The proof is a direct consequence of subdivision. 0 

Proposition 3.11. Let w be a walk with endpoints I and y (which project to the 
points U and v respectively), and let v be the projection of the walk Then there is a 
sequence of BFACF moves which will transform w into a conformation with a regular 
projection. In addition, B ( z , y ) n w  = { ~ , y ) , a n d  O ( u , v ) n u =  {U,.). 
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prwf. The proof is a direct consequence of lemmas 3.6 and 3.7, as well as propo- 
sitions 3.9 and 3.10. We use the lemmas to empty the boxes of all segments of the 
walk, and then we turn our attention to unwanted parts in the projection. We can 
easily rid the projection of these by first applying propositions 3.9 and 3.10, and then 
we use proposition 3.3 to rearrange the segments in an acceptable fashion, as we did 
in I. 0 

3.2. Walks and ascending projections 

In this section we study the regular projection of a walk. We use the ideas about 
knot projections and walk projections developed in section 2 2  to prove that we can 
put our walk in a conformation which has an ascending projection. 

In the last section we proved that BFACF moves are sufficient to transform any 
given walk w with endpoints x and y, projection U = Paw and projected endpoints U 
and U into a conformation with a regular projection such that 5( z, y) n w = {x, y) 
and 5(u, U) n U = {U,.). Since the box 5(z ,y )  contains at most the endpoints of 
the walk, we can connect x and y with a line piece p. The union w U g is now a 
piecewise linear embedding of the circle S’ in ‘R3, and therefore a knot. 

Flgum 5. Reidemeister I over Ule b e d  endpoints of the walk. 

Note that every double point in U (which is now redefined as P.(w n p ) )  are 
outside the box B(u, U). We immediately have the following proposition, which was 
proven in I: 

Proposifion 3.12. Let w be. a walk with a regular projection v, and suppose that 
5 ( u ,  w )  n U = {U, U), where zl and w are the projected endpoints of the walk. Then 
we can perform any Reidemeister move in U. 

proof. All that we must show is that we can perform these moves if the segments 
involved are connected to the endpoints of the walk. The easiest case is Reidemeister 
I1 (figure 3(c)). ’WO segments are involved, and suppose that one segment contains 
at least one of the endpoints of the walk. Then we move the segment which does 
not contain the endpoints and p ,  using, as in I, propositions 3.9 and 3.10 to grow 
space for the move (by subdivision) and proposition 3.3 to move the segment to 
its new position. The next move we consider is Reidemeister 111. Here we move 
only one segment of the walk (say the segment containing only underpasses), so if 

, 
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it does not contain the endpoints, then we are done, else we move the segment 
with overpasses, which results in the same configuration (see figure 3(d)). Finally we 
deal with Reidemeister I (figure 3(b)). If the segment between the overpass and the 
underpass does not contain one of the endpoints, then we are done, otherwise we 
perform the move in figure 5 first, this removes the endpoints from the segment we 
want to readjust. We can always perform the operation in figure 5 @y subdivision 

0 

There is now one more move that we must consider, the move in figure 3(a). This is 
the move that we shall use to turn an overpass into an underpass while we manupi- 
late the projection of the walk. We can think of this move as an addition to the 
Reidemeister moves; we refer to it as Reidemeister 0. 

Proposition 3.13. Let w be a walk with a regular projection U, and suppose that w 
has endpoints 2 and y. If d ( z ,  y)  > 1,  and if O(z, y)nw = {z, y} and O(U, v ) n u  = 
{U, U }  (where U and U are the projected images of I and y), then we can perform 
Reidemeister 0 on the projection of w. 

Proof. Without loss of generality, suppose that IX,(z) - X,(y)l > 1. Then, if U 
and 2) are the projected endpoints, d(u,U) > 1. Without loss of generality, suppose 
that we must move a segment which overpasses at the double point. In U, there 
is a segment of two edges which overpasses the double point (since the projection 
is regular). Fix this segment at its endpoints; we shall now perform BFACF moves 
on the segment until it is projected in U inside the box B ( u , v ) .  Determine its 
new projection and apply propositions 3.9 and 3.10 to sweep all other segment from 
the projected area to prevent the Occurrence of unwanted Reidemeister moves or 
collisions. Then by proposition 3.3 we can find a conformation of the segment which 
projects inside B(u, U ) .  We can now perform BFACF moves in the e3 direction to push 
the segment through the box O(z,y) (we can always do this, since d ( u , v )  > 1). 
Since the moves are symmetric, we apply proposition 3.3 again to take the segment 
back to its original projected position in U. Then we have changed an overpass into 

0 
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and propositions 3.9 and 3.10.) 

an underpass. Similarly, we can change an underpass into an overpass. 

We can now prove: 

Theorem 3.14. Let w be a walk with endpoints z and y and suppose that d ( z ,  y) > 
1. If p is a line piece which connects the points z and y, then there exists a sequence 
of BFACF moves which will change the conformation of w such that the projection 
P,(w U p )  is regular and ascending (that is w U p  is the unknot). 

PrmJ The theorem is a direct consequence of propositions 3.11, 3.12 and 3.13, 
as well as Reidemeister’s theorem (Reidemeister 1932). We can always do this by 
first using a set of moves in the (continuous) plane Rz, which we then approximate 
arbitrarily close using subdivision in our projected walk If there is a collision, then 
we simply subdivide (using propositions 3.9 and 3.10) to avoid it. (In effect, we put 

0 

It is of great importance to note the power of subdivision in all these propositions. In 
essence, it allows us to approximate an embedding in R3 arbitrarily close, so that we 

our walk on a very fine grid, which looks much like the continuous plane.) 
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can perform essentially continuous operations on the polygon (that is we can change 
the scale such that any move can be made as small as desired, which avoids collisions 
between different segments). 

3.3. Ergodicdy 
The proof of ergodicity is now an easy consequence of proposition 3.12 and theo- 
rem 3.14. Let w be any given walk with endpoints z and y such that d(z,y)  > 1. If 
p is a l i e  piece connecting the vertices z and y in R3, then there is a sequence of 
BFACF moves which will transform w such that the projection of w u p  is regular and 
ascending. The following proposition completes the prooE 

Proposition 3.15. Let w he a walk in Z d  with endpoints z and y, and suppose that 
p is a line piece which connects the p in t s  z and y in R3. If in addition there exists 
a rotation or reflection of the axes such that P,(w U p )  is a regular and ascending 
projection, then there exist a sequence of BFACF moves which will remove every 
double point from the projection. 

emf. This proposition is a direct consequence of Reidemeister’s theorem (Reide- 
0 

Therefore, we have the following corollary: 

Corollary 3.16. Let w be a walk with endpoints 2: and y in Z3 and suppose that 
d(z,  y)  = 1. If z and y are connected by a line piece p in R3, and if w U p is the 
unknot, then the BFACF algorithm is ergodic in the set of all unknots. 

In addition, we finally have our main theorem: 

Theorem 3.17. The BFACF algorithm is ergodic if we apply it to k e d  endpoint walks 
in three dimensions, provided that the endpoints of the walk differ by at least two 
units in one coordinate. 

PrmJ The proof is now easy: First apply theorem 3.14 and proposition 3.15 to 
the walk, then by proposition 3.3 we can put it in a conformation with a ‘standard’ 
self-avoiding projection. The last step is to perform BFACF moves in the e3 direction, 
then we can adjust the third component of the coordinates to some prefered mlue.0 

4. Conclusions 

The proof provided in section 3 works only in three dimensions. In fact, we do not 
expect it to generalize to higher dimensions, since it involves the projections of walks 
in hvo dimensions. It seems likely that the algorithm is ergodic in higher dimensions, 
independent of the value of d(z,y) ,  where z and y are the endpoints of the walk. 
Some progress towards a proof of ergodicity in higher dimensions for polygons and 
walks has recently been made (Evertz 1991). 

In three dimensions a more complicated picture arises. The algorithm is ergodic 
if d(z ,  y) > 1, and the ergodicity classes are knot types of the polygons if we apply 
the algorithm to unrooted polygons (Janse van Rensburg and Whittington 1991). If 
d(z,y)  = 1 and we connect the vertices z and y by a line piece p, then it seems 
likely that the ergodicity classes will be defined by the knot types of the embedded 
circles formed by the union of the walk and the line piece p ,  but a proof is elusive. 

meister 1932) and proposition 3.12 
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